Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction.
نویسندگان
چکیده
A significant challenge in the development of chip-scale cavity-optomechanical devices as testbeds for quantum experiments and classical metrology lies in the coupling of light from nanoscale optical mode volumes to conventional optical components such as lenses and fibers. In this work we demonstrate a high-efficiency, single-sided fiber-optic coupling platform for optomechanical cavities. By utilizing an adiabatic waveguide taper to transform a single optical mode between a photonic crystal zipper cavity and a permanently mounted fiber, we achieve a collection efficiency for intracavity photons of 52% at the cavity resonance wavelength of λ ≈ 1538 nm. An optical balanced homodyne measurement of the displacement fluctuations of the fundamental in-plane mechanical resonance at 3.3 MHz reveals that the imprecision noise floor lies a factor of 2.8 above the standard quantum limit (SQL) for continuous position measurement, with a predicted total added noise of 1.4 phonons at the optimal probe power. The combination of extremely low measurement noise and robust fiber alignment presents significant progress towards single-phonon sensitivity for these sorts of integrated micro-optomechanical cavities.
منابع مشابه
Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.
Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams with...
متن کاملCavity Optomechanics at Millikelvin Temperatures
The field of cavity optomechanics, which concerns the coupling of a mechanical object’s motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical o...
متن کاملDiabolical points in multi-scatterer optomechanical systems
Diabolical points, which originate from parameter-dependent accidental degeneracies of a system's energy levels, have played a fundamental role in the discovery of the Berry phase as well as in photonics (conical refraction), in chemical dynamics, and more recently in novel materials such as graphene, whose electronic band structure possess Dirac points. Here we discuss diabolical points in an ...
متن کاملUltraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate
Optomechanical crystal (OMC) cavities which exploit the simultaneous photonic and phononic bandgaps in periodic nanostructures have been utilized to colocalize, couple, and transduce optical and mechanical resonances for nonlinear interactions and precision measurements. The development of near-infrared OMC cavities has difficulty in maintaining a high optomechanical coupling rate when scaling ...
متن کاملExternal Control of Dissipative Coupling in a Heterogeneously Integrated Photonic Crystal—SOI Waveguide Optomechanical System
Cavity optomechanical systems with an enhanced coupling between mechanical motion and electromagnetic radiation have permitted the investigation of many novel physical effects. The optomechanical coupling in the majority of these systems is of dispersive nature: the cavity resonance frequency is modulated by the vibrations of the mechanical oscillator. Dissipative optomechanical interaction, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2013